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Performance pathologies can be found in almost any 
software, from user to kernel, applications, drivers, etc. 
At Sun we’ve spent the last several years applying state-
of-the-art tools to a Unix kernel, system libraries, and 
user applications, and have found that many apparently 
disparate performance problems in fact have the same 
underlying causes. Since software patterns are consid-
ered abstractions of positive experience, we can talk about 
the various approaches that led to these performance 
problems as anti-patterns—something to be avoided rather 
than emulated. 

Some of these anti-patterns have their roots in hard-
ware issues, some are the result of poor development or 
management practices, and some are just common mis-
takes—but we’ve seen them all repeatedly. In this article 
we discuss these mistakes: what causes them, how to find 
them, and how best to avoid them.  
 
FIXING PERFORMANCE AT THE END OF THE PROJECT 
Software development is often a resource-constrained 
problem. Rarely do project or product teams have all the 
work years they might want. Unfortunately, an area that 
often receives short shrift is measuring and evaluating 
performance. Far too often, project teams race to the end 
of the schedule developing new features and fixing bugs, 
and performance work is left as an afterthought. They 
often fail to formulate performance goals or bench-
marks, and the first time the developers even consider 
performance is after reports of performance problems 
are received from their beta test sites. At this point in a 
project, we have often joked about getting out the “perf 
spray,” hoping we could quickly spray on some perfor-
mance as if it were some sort of flashy paint.
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This anti-pattern seems obvious, but many projects 
have rediscovered this the hard way. If your team doesn’t 
bother to model or measure software performance or 
waits until near the end of the project to begin, it’s 
unlikely to get good results except by happy accident. 

MEASURING AND COMPARING THE WRONG THINGS
Selecting a benchmark and comparing the results seems, 
initially at least, to be a simple problem, but a host of 
mistakes are made during this process. For some releases 
of Solaris, for example, the performance metric was to be 
no more than 2 percent slower than the previous release 
on a set of large system benchmarks. This was a mistake, 
akin to exercising just hard enough to gain only two 
pounds per year. It practically ensured that Solaris perfor-
mance would decrease over time. 

This goal also ignored competitive realities, as no 
attempt was made to compare the performance with 
other operating systems. In addition, the use of large 
benchmarks meant that when a regression in perfor-
mance occurred, the dearth of test rigs ensured that 
analyzing the performance regressions would hamper 
additional testing. 

What and how should we be measuring? A good 
benchmark is:
•  Repeatable, so experiments of comparison can be con-

ducted relatively easily and with a reasonable degree of 
precision.

•  Observable, so if poor performance is seen, the devel-
oper has a place to start looking. Nothing is more 
frustrating than a complex benchmark that delivers a 
single number, leaving the developer with no additional 
information as to where the problem might lie.

•  Portable, so that comparisons are possible with your 
main competitors (even if they are your own previous 
releases). Maintaining a history of the performance of 
previous releases is a valuable aid to understanding your 
own development process. 

•  Easily presented, so that everyone can understand the 
comparisons in a brief presentation.

•  Realistic, so that measurements reflect customer-experi-
enced realities. 

•  Runnable, so that all developers can quickly ascertain 

the effects of their changes. If it takes days to get perfor-
mance results, it won’t happen very often.

Not all benchmarks selected will meet all of these crite-
ria, but it’s important that some of them do. Make sure to 
select enough benchmarks so that important parts of your 
product’s performance envelope aren’t a surprise when it 
ships—and avoid selecting benchmarks that don’t really 
represent your customer, because your team will end up 
optimizing for the wrong behavior. Resist the tempta-
tion to optimize for the benchmark; the recent discovery 
that some operating systems have “improved system call 
performance” by moving the getpid(2) system call into 
user-land is a perfect example; no real application calls 
getpid(2) enough to matter. 

Selecting a benchmark is asking for that aspect of 
performance to be optimized, probably at the expense of 
other aspects that are not being measured. If as an operat-
ing system developer you want faster system calls, design 
a benchmark that is a weighted average of the calls your 
customers’ applications make most frequently. Be careful 
what you ask for, because you’re likely to get it.

ALGORITHMIC ANTIPATHY
For many software developers, algorithms are something 
they studied back during their college days, and thank-
fully not something with a lot of relevance to their day 
jobs. During Solaris 10 development, Solaris engineers 
fixed a long list of performance problems across the ker-
nel and user libraries. Toward the end of the release, we 
spent some time reviewing just what had been improved 
and by how much—and what was the underlying cause 
of the performance problem. Interestingly enough, all the 
really big improvements (above, say, 200 percent) resulted 
from changes in algorithms. Over and over again, all the 
other performance fixes—using specialized SIMD proces-
sor instructions such as SSE2 or VIS, inserting memory 
prefetch instructions, cycle shaving—paled in significance 
compared with simply going back and rethinking the 
locking algorithms and/or data structures. 

A key part of algorithm selection is having a realis-
tic benchmark or workload in hand to support making 
decisions based on actual results rather than intuition 
or folklore. This means the most effective time to do 
performance and scalability work is in the earlier phases 
of the project, perhaps the exact opposite of what usually 
happens. All the clever compilation options are pretty 
useless when dealing with O(n2) algorithms for large val-
ues of n. Poor algorithms are the number 1 (and probably 
numbers 2 and 3 as well) cause of poor software system 
performance. 
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REUSING SOFTWARE
Who would be so incautious as to code an O(n2) algo-
rithm? Well, for small values of n, the difference may not 
matter, and the simplistic algorithm might indeed be 
faster. But a perfectly reasonable value of n in 1992 might 
look rather absurd in 2005, and for long-lived products 
or source bases such as operating systems, this is a real 
concern. For example, the basic design of the Solaris VM 
system comes from SunOS 4.0, which was in develop-
ment in 1985. Back then, a well-configured machine had 
perhaps 1,000 pages of real memory. Twenty years later, 
a well-configured desktop machine may have several mil-
lion pages, and large servers, far more.

Yes, we’ve made extensive changes to compensate for 
this, but were we to rewrite the VM system from scratch, 
we would make significantly different choices in light of 
today’s conditions. Other examples of the same problem 
include databases where the indices are no longer aligned 
with the prevailing queries, open hash tables undersized 
for current problems, hash functions that don’t work well 
anymore with changes in input, etc. 

One of the most valuable methods of catching these 
sorts of problems is for the original developer both to 
document the assumptions about the externalities affect-
ing the code and to provide some sort of programmatic 
means of validating those assumptions later on. One use-
ful technique, for example, is to keep track of maximum 
hash chain lengths on an open hash, as well as the total 
hash table population; this allows for the easy identifica-
tion of both undersize (or the need for self-resizing) hash 
tables and poor hash functions. Another technique is to 
force an error when assumptions are violated; this causes 
a hard failure with, hopefully, a clear error rather than a 
mysterious slowdown of unknown cause; this of course 
may not be appropriate for some applications. Software 
reuse is a fine goal, but beware of violating the assump-
tions made during its development. 
 
ITERATING BECAUSE THAT’S 
WHAT COMPUTERS DO WELL
During our efforts to tune OpenWindows performance in 
the early 1990s, we found that engineering users fre-
quently complained about scrolling performance on their 
X desktops. After examining the shell, terminal emulator, 
and X server performance, we found that an amazing 
amount of work was involved just to scroll a single line 
of text to the screen. This work was nicely distributed in a 
variety of different places, none of them apparently sub-
ject to the quick fix we performance engineers were, of 
course, looking for at the tail end of the project. Our dis-

cussions led us to the idea of avoiding scrolling the screen 
as much as possible, so we started searching for ways to 
avoid doing this while still preserving the existing seman-
tics and user experience. After some thought, we intro-
duced a buffering streams module that would be plumbed 
into the pseudo-terminal. This would coalesce multiple 
small writes from the user’s application into a single large 
block readable at once by the terminal emulator. 

The terminal emulator was recoded to take the entire 
block of text from the application and place it in the win-
dow scroll buffer and then jump to the end of the buffer. 
This led to a more than tenfold improvement in scrolling 
performance—and made the system feel much faster even 
under load, since we were doing so much less work. The 
point of this anecdote is obvious: If your application is 
doing unneeded or unappreciated work—repainting the 
screen multiple times, computing statistics too frequently, 
etc.—then eliminating such waste is a lucrative area for 
performance work. What often matters for applications is 
the end state of the program, not the exact series of steps 
used to get there. Often a shortcut is available that will 
allow us to reach the goal more quickly. It’s like shorten-
ing the race course rather than speeding up the car: With 
the exception of correctly used memory prefetch instruc-
tions, the only way to go faster in software is to do less. 
 
PREMATURE OPTIMIZATION
Frequently during performance audits we find software 
that appears to be carefully tuned and optimized, only to 
discover that the hand-unrolled loops, register declara-
tions, inline functions (sometimes written in assembly 
language), and other apparent artifacts of a protracted 
tuning effort are instead performance decorations. They 
make the software look fast but have no positive impact 
on actual delivered performance, not unlike a pair of 
chromed valve covers on a car. These optimizations are 
often done during initial development by engineers just 
coming off the crash tuning phase of the previous project. 

Premature optimization indeed often adversely affects 
performance on real benchmarks, either by increasing the 
instruction cache footprint enough to cause misses and 
pipeline stalls, confusing the register allocator in the com-
piler, or sometimes by discouraging other engineers from 
carefully looking for the actual source of the performance 
problems. Low-level cycle shaving has its place—but only 
at the end of the performance effort, not during initial 
code development. Even then, the conditions under 
which the tuning is done should be carefully documented 
to help others later evaluate whether those conditions are 
still valid. 
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As noted earlier, the most effective software perfor-
mance work focuses on algorithms, not low-level details; 
there is nothing sillier than a hand-coded assembler 
linked list instead of a simple hash table coded in C. 
Another reason such low-level optimization isn’t a good 
idea is that it tends to be platform-centric: For software 
that needs to run well on a diverse set of systems or 
processors, these techniques often require separate ver-
sions of these routines for each platform—a painful and 
expensive approach from a development, portability, and 
test perspective. Wait on such efforts until you’re sure 
(based on the result of actual experiments, not intuition) 
that this will be a cost-effective way of increasing perfor-
mance. Donald Knuth said it: “Premature optimization is 
the root of all evil.”

FOCUSING ON WHAT YOU CAN SEE 
RATHER THAN ON THE PROBLEM
Those of us working on Solaris performance are fre-
quently asked to determine the causes of an application’s 
poor performance, often with the thought that there 
must be some underlying operating system defect causing 
the problem. Although this sometimes turns out to be an 
issue, in the vast majority of cases the problem actually 
turns out to be in the application itself—and then, often 
in the way the customer is using the application. 

Thinking about the nature of applications program-
ming makes the reason clear. Each line of code at the top 
level of the application causes, in general, large amounts 
of work elsewhere farther down in the software stack. As a 
result, inefficiencies at the top layer have a large mul-
tiplier magnifying their impact, making the top of the 
stack a good place to look for possible speed-ups. Tradi-
tionally, however, the dearth of suitable tools for observ-
ing the behavior of applications has led performance 
engineers to attempt to use low-level tools such as truss, 
strace, or the various performance monitoring commands 
such as iostat to diagnose performance problems; this 
has often led to attempts to speed up common operat-
ing system calls or I/O operations rather than modifying 
applications to reduce the number of calls being made. 
For example, if you’re faced with a database application 
performance problem, look at SQL first; once that has 

been tuned, the database properly indexed, etc., then 
perhaps it’s time to look at disk utilization. 

Fortunately, the advent of high-level dynamic instru-
mentation tools such as DTrace in Solaris 10 has made 
observation of high-level application behavior and attri-
bution of the resultant effects on the system much easier; 
this should help system performance engineers focus on 
the real causes of poor performance.

SOFTWARE LAYERING
Many software developers become fond of using layering 
to provide various levels of abstraction in their software. 
While layering is useful to some extent, its incautious 
use significantly increases the stack data cache footprint, 
TLB (translation look-aside buffer) misses, and function 
call overhead. Furthermore, the data hiding often forces 
either the addition of too many arguments to function 
calls or the creation of new structures to hold sets of argu-
ments. Once there are multiple users of a particular layer, 
modifications become more difficult and the performance 
trade-offs accumulate over time. A classic example of this 
problem is a portable application such as Mozilla using 
various window system toolkits; the various abstraction 
layers in both the application and the toolkits lead to 
rather spectacularly deep call stacks with even minor 
exercising of functionality. While this does produce a 
portable application, the performance implications are 
significant; this tension between abstraction and imple-
mentation efficiencies forces us to reevaluate our imple-
mentations periodically. In general, layers are for cakes, 
not for software. 

EXCESSIVE NUMBERS OF THREADS
Once programmers become familiar with threads (or 
worse, multiple cooperating processes), one of the more 
common mistakes is deciding to use a thread (or process) 
per connection or other unit of pending work. This is 
admittedly a simple programming model with the per-
connection/task state being conveniently kept on the 
thread stacks. This works well in small or LAN test envi-
ronments, when connections drain quickly and a small 
number of threads is sufficient to completely load the 
machine. Once this application is deployed against thou-
sands of slow connections, the programmers discover that 
their pride and joy requires thousands of threads to use 
the hardware effectively, and these thousands of threads 
don’t really perform all that well since the machine now 
has a lot of TLB and cache pressure from all those stacks. 

The right answer is to limit the number of threads to 
a more reasonable number (near the number of CPUs) 
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and to use a work-pile model and asynchronous I/O to 
multiplex the worker threads against the tasks to be done. 
These sorts of application architectures scale much more 
easily and behave much more gracefully under heavy 
loads. After all, if the application’s net throughput begins 
to drop over a certain load level, the situation is inher-
ently unstable—not a good place to be.

ASYMMETRIC HARDWARE UTILIZATION
Modern CPUs are much, much faster than the memory 
systems connected to them. Some processor designs use 
three levels of caches to hide the latency of memory 
accesses, and multilevel TLBs are now becoming com-
mon as well. These caches and TLBs use varying degrees 
of associativity, or ways, to spread the application load 
across the caches, but this technique is often accidentally 
thwarted by other performance optimizations. 

One simple example is a performance tool that 
reorders functions in a shared library to place the most 
commonly used functions at the beginning of the library, 
an apparently reasonable strategy to reduce ITLB (instruc-
tion translation look-aside buffer) miss rates and paging. 
When applied to many shared libraries, however, this 
results in the beginning of each shared library’s text seg-
ment being much more frequently accessed than other 
portions; since the SPARC 32-bit ABI (application binary 
interface) requires 64KB alignment of executable text sec-
tions, this means that those TLB entries falling on 64KB 
boundaries are much more commonly used, effectively 
reducing the size of the ITLB by a factor of 8. The same 
kind of effect has been seen when large numbers of 
identical processes use large pages for their heap or stack 
to avoid excessive TLB pressure: With newer CPUs having 
page sizes larger than their L3 caches, the page coloring 
algorithms that prevented hot-spotting from occurring 
with small pages are no longer effective, and some lines 
in the caches become very overused. 

Another example of this occurred with a database ven-
dor whose code allocated large chunks of shared memory 
(allocated with large pages) in a multiple of the L2 cache 
size; by having similar access patterns in each of the large 
chunks, the vendor reduced the hit rate of the L2 cache 
significantly. Hot-spotting can also occur with physical 
memory; allocation behavior on NUMA (nonuniform 
memory access) machines that favor one area of memory 
(and thus a subset of the available memory controllers) 
over another can cause noticeable increases in average 
memory access times. 

Detecting and avoiding this hot-spotting problem can 
be difficult, since hardware counters and tools are often 

lacking in the ability to allow direct observation of these 
effects; once detected, avoiding such hot-spotting can be 
difficult without application-visible effects such as skew-
ing heap or stack addresses. We’ve had some success in 
the past modeling various cache and TLB configurations 
with simple programs and playing the program’s access 
patterns against the models; more work is definitely 
needed in this space, given that this is such a common 
performance inhibitor in otherwise well-tuned applica-
tions. Where possible, constructing simple graphs (either 
directly measured or modeled) of relative cache-line and 
TLB entry miss frequencies will almost instantly point 
out any fruitful areas for further examination. Often 
the deliberate injection of randomness into allocation 
patterns, memory layout, etc. is needed to prevent hot-
spotting; for example, we’ve randomized the allocation 
patterns of physical memory across memory controllers 
for large shared memory segments in the Solaris kernel 
to avoid the static patterns that always seem to interfere 
with at least one important application’s performance.
 
NOT OPTIMIZING FOR THE COMMON CASE
When designing locking algorithms, one can take into 
account significant asymmetries in the usage patterns of 
the access routines. The frequent operations can occur 
several orders of magnitude more often than the infre-
quent ones; designing locking algorithms to take advan-
tage of this asymmetry can yield significant benefits. One 
simple example is the use of per-bucket hash table locks; 
this improves scalability for simple searches, inserts, or 
deletes into the table, while penalizing operations that 
require access to the entire table, such as resizes. A key 
part of algorithm selection is having a realistic bench-
mark in hand to support decisions based on actual results 
rather than intuition or folklore.

A more complex example is the method used to lock 
the CPU list in the Solaris kernel. This list of CPU struc-
tures is frequently traversed by different CPUs attempting 
to make scheduling decisions. Since Solaris supports both 
taking CPUs on- and offline and (on capable hardware) 
adding new CPUs or removing others, the CPU list must 
be modifiable when (rarely) needed, yet be efficiently 
traversable by many CPUs at the same time. The current 
locking implementation for the CPU list leverages the 
vast preponderance of read accesses versus write by forc-
ing any CPU that wishes to modify the list to cause all 
other CPUs to run a special pause thread; thus, a thread 
wishing to traverse the list safely need only prevent its 
own preemption. This requires only a local (nonatomic) 
memory reference.
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 This ensures fast, scalable locking of the CPU list 
for reading, but makes modifications many orders of 
magnitude more expensive and completely unscalable, a 
reasonable trade-off given the relative frequencies of the 
two operations.

NEEDLESS SWAPPING OF CACHE LINES BETWEEN CPUS
As noted earlier, system designers use caches to hide 
memory latencies from the CPUs. On multiprocessors, 
carefully designed hardware protocols ensure that only 
one cache in a system contains a modified version of 
memory; multiple caches may contain unmodified copies 
of memory. When one CPU attempts to write memory 
currently in another CPU’s cache, a cache-to-cache trans-
fer takes place to move ownership of that cache line (typi-
cally 64 bytes) between CPUs. On large multiprocessors, 
this can take a significant amount of time and available 
bandwidth; minimizing the amount of these transfers 
measurably improves scalability. The cause of these trans-
fers is often simple to understand: a single counter in an 
infrequently accessed code path that is incremented by 
each thread (and CPU) that traverses that routine. Should 
that code path become more frequently used, exchanging 
the cache line containing that counter may become the 
limiting factor in application scalability.

Some examples are a little more difficult to spot: An 
array of integer counters indexed by CPU ID is a clas-
sic example of false sharing, so named because the CPUs 
don’t appear to be sharing the counters; the problem is 
that the granularity of memory ownership is 64 bytes, 
forcing 16 CPUs to collide on the same cache line. In soft-
ware they don’t share the data—but they do in hardware. 
A subtler version of the same problem arises from using 
a general-purpose allocator such as malloc(3C) to allocate 
eight-byte chunks of memory for different threads; mul-
tiple calls to malloc could easily return different blocks 
residing on the same cache line.

Another cause of needless cache-line swapping is the 
placebo lock; this makes the programmer feel better but 
doesn’t really do anything. A frequently seen example is a 
simple counter that is protected by a lock for reading. The 
lock is acquired, the counter read, and the lock dropped. 
On all modern hardware running Solaris, 32-bit reads are 

atomic: The lock does nothing except reduce scalability 
needlessly. 

A subtler locking problem that often impacts scal-
ability is the misuse of reader-writer locks. At first blush, 
reader-writer locks appear to improve scalability signifi-
cantly in the case of frequent readers and infrequent writ-
ers—but looking closely at how these locking primitives 
are implemented shows us that we grab and release a 
simple lock both upon getting the reader-writer lock and 
upon releasing it. Thus, we do twice as many atomic oper-
ations. If the hold time of the reader lock is short, as is 
typically the case, we would do better just using a simple 
mutex instead of a reader-writer lock. Reader-writer locks 
make sense when the read lock is held for a long time; 
the cost of the added atomic operations is overcome by 
the scalability improvements afforded by having multiple 
readers in the critical section at the same time. 

Detection of excessive cache-to-cache transfers or false 
sharing can be difficult. One useful, reasonably portable 
technique is to look at statements that both reference 
memory and rank prominently in their execution time 
profile; this works well if most (unshared) loads don’t 
miss the caches. This area remains a largely unexplored 
opportunity for developer tools; careful integration with 
both the compiler and runtime data collection will be 
required to solve this properly. 

AVOIDING ANTI-PATTERNS
This list of performance anti-patterns is by no means 
complete; however, being familiar with those issues that 
have made our work more challenging should help others 
avoid them—or at least recognize them more quickly. 
Although not all of our projects may have the perfor-
mance resources we might like, avoiding these anti-pat-
terns will make even those limited resources that much 
more effective. Remember, the performance work done at 
the beginning of the project in terms of benchmark, algo-
rithm, and data-structure selection will pay tremendous 
dividends later on—enough, perhaps, to allow you to 
avoid that traditional performance fire drill at the end. Q
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