
Semantic Data Management: Towards Querying Data with their Meaning

Lipyeow Lim Haixun Wang Min Wang
IBM T. J. Watson Research Center
{liplim,haixun,min} @us.ibm.com

Abstract Id Type Origin Maker Price
1 Burgundy CotesDOr ClosDeVougeot 30

Relational database management systems are constantly be- 2 Riesling NewZealand Corbans 20
ing extended and augmented to accommodate data in differ- 3 Zinfandel EdnaValley Elyse 15
ent domains. Recently, with the increasing use of ontology (a) The Wine base table
in various applications, the need to support ontology, espe-
cially the related inferencing operation, in DBMS has become r
more concrete and urgent. However, manipulating knowledge N F* * *' * * * ~~~~~~~~~NewZealand French US Italian German
along with relational data in DBMSs is not a trivial undertak-
ing due to the mismatch in data models. In this paper, we in- Bourgogne Bordeaux California Texas
troduce a framework for managing relational data and hier- I
archical domain knowledge together Our framework persists CotesDOr Meursauft Ednaalley Mendocino CentralTexas
taxonomies contained in ontologies by leveraging XML sup- (b) The locatedln property.
port in hybrid relational-XML DBMSs (e.g., IBM's DB2 v9)
and rewrites ontology-based semantic matching queries using Figure 1. Our running example consists of the wine base ta-
the industry-standard query languages, SQLIXML and XQuery. ble, and the hierarchical locatedln property from the wine on-
Compared with previous approaches, our approach does not tology.
materialize transitive closures of ontological relationships to
support inferencing. Consequently, our method has wide ap-
plicability and good performance.

method, we use an example to illustrate the task we are under-
taking.
Running Example.. Assume we have a relational table for

1 Introduction wines, as shown in Figure 1(a). Every row in the wine table
is associated with a specific instance of wine. Each wine has

Current DBMSs, albeit improved by many extensions over the following attributes: type, origin, maker, and price.
the years, are not ready to manipulate data closely with knowl-
edge. On the other hand, an increasing number of applications Exam1r(Ontology-bae mantic Que to findowine
are dealing directly with ontologies. An ontology is a machine that originated from US, we may naively issue the following
readable vocabulary for specifying domain knowledge. Since SQL query.
the data are managed by DBMSs, it is desirable that the do- SELECT W. Id

* 1 1 1 1 * r ~~~~~~FROMWine AS Wmain knowledge can be managed in the same framework, so
that users can query the data, the domain knowledge, and the WHERE W.Origin = 'US';
knowledge inferred from the data in the same way as querying The above query fails to return the wines that semantically sat-
just relational data. We call such an effort semantic data man- isfy the query condition.
agement.

In order to support semantic data management in DBMSs, To provide semantically correct answers, the query processor
new extensions are required to bridge the gap between data rep- must know (i) that " Origin" is a location, and (ii) what is loca-
resentation and knowledge representation/inferencing. Towards tion's semantics. In other words, we want to move from query-
this goal, we propose a framework that leverages native XML by-value to query-by-meaning.
capabilities in a DBMS to support inferencing operations such Data semantics can be encoded in ontologies using several
as subsumption checking. Before diving into the details of our machine-readable formats. For the purpose of illustration, we

1 -4244-0803-2/07/$20.00 ©C2007 IEEE 1438

will use the well-known wine ontology [13, 8] encoded in the * We show that ontology-based subsumption queries can
Web Ontology Language (OWL) [10, 9]; however, we will limit be expressed using industry-standard query languages,
our discussion to subsumptive relationships and defer the treat- SQL/XML and XQuery, and they can be processed in a
ment of general, non-subsumptive relationships in our full pa- hybrid relational-XML DBMS using our storage model.
per. Consider the locatedln property or relationship in the wine * Subsumption checking is one of the most expensive op-
ontology as shown in Figure l(b). In essence, the locatedln re- eration in processing queries over ontology data. Previ-
lationship encodes a taxonomy of geographical regions along ous approaches pre-compute the transitive closure in order
with the common-sense subsumption and transitive semantics. to achieve reasonable performance. Our method performs

Consider the query in Example 1 again. To use the locate- subsumption checking at query execution time by lever-
dIn relationship from the ontology, instead of asking for wines aging on XPath and XQuery support. Hence, our method
whose origin is equal to US, we ask for wines whose origin is does not suffer from the problem of storing large amounts
located in US. Suppose the query processor has access to the of pre-computed inference results nor the problem of up-
locatedln relationship from the wine ontology as shown in Fig- dating these pre-computed results when the ontology data
ure l(b). Further suppose the query processor understands that change.
the transitive semantics of the locatedln relationship, that is,

Paper Organization. The rest of the paper is organized as fol-
locatedln(a, b) n locatedln(b, c) =# locatedln(a, c), lows. In Section 2, we briefly introduce hybrid database sys-

tems for relational and XML data using IBM DB2 v9 as an ex-where a, b, c are object instances. The query processor can then ample. Sectiona3 d how we store tasiv anship
ample. Section 3 describes how we store transitive relationshipsdetermine that EdnaValley is located in California, and Califor-
from ontology data, how semantic queries can be expressed, andnila iS located in the US.

The
i prcated ing descriptionshows the proceSof.reasoning how semantic queries can be re-written. In Section 4, we giveThe preceding description shows the process of reasoning...

with ontology specific to Example 1. The goal of this paper is a brief survey of previous work on supporting ontology-based
to provide a mechanism to assist the users to ask general, high semantic queries. Conclusions are drawn in Section 5.
level ontology-based queries against any dataset, and to enable
the DBMSs to carry out inferencing over transitive relationships 2 Hybrid Relational-XML DBMSs
defined in the ontology such that these queries can be answered
efficiently. The logic modeling described in the previous section need

The first challenge in handling ontology-based semantics physical level support. Our framework leverages hybrid
queries is how to store and access the ontology data, which relational-XML DBMSs to provide physical level support for
are often represented by graphs. Another challenge is that re- domain knowledge. A hybrid relational-XML DBMS extends
lationships embodied by an ontology usually have a variety of an RDBMS with the following components: (1) a native XML
properties, which include transitivity, equivalency, etc. A ma- storage that stores an XML document as an instance of the
jor focus in this paper is in handling transitive relationships, XQuery Data Model (QDM), i.e., as a structured, typed, bi-
as they are involved in many useful queries (such as Example nary tree, (2) new index types for XML data including struc-
1), but are difficult to express by the end user and are costly tural indexes, value indexes, and full-text indexes, (3) a hybrid
to process by the system, as they often require recursive SQL query compiler that can process XQuery and SQL, and (4) an
queries. Currently, to support ontology-based semantic queries enhanced query runtime that supports XQuery and SQL/X op-
efficiently in a DBMS, a well-known approach is to pre-process erators.
the ontology data by pre-computing and storing (materializing) In a hybrid relational-XML DBMS, XML is supported as a
the transitive closures for all transitive relationships in the on- basic data type. Users can create a table with one or more XML

tol emain problem with this approach is its huge time type columns. A collection ofXML documents can therefore be
tologyorThe overhead. Furthermore, it makes update of ontol- defined as a column in a table. For example, a user can create aand storage overhead. Furthermore, it makes update of ontol- table transitiveRein with the following statement:
ogy data almost impossible once the transitive closures have
been materialized. CREATE TABLE transitiveReln (id integer,

Due to the challenges, we argue that neither relational name VARCHAR(27),
databases nor pure XML databases are adequate for the task. In hierarchy XML);
this paper, we show that ontology-based semantic queries can Users can query relational columns and XML column to-
be naturally supported in a hybrid relational-XML DBMS (eg. gether by issuing SQL/X query [3, 4]. For example, the fol-
IBM's DB2 Viper release). lowing query returns relationship ids and names of all transitive
Contributions. In summary, the contributions of this paper are relationships that contain the XPath /World/ /CoteTsDOr:
as follows: SELECT id, name

FROM transitiveRein AS T
* We introduce a novel method for storing and manipulating WHERE XMLExists ('$t/World//CotesDOr'

ontology data in a hybrid relational-XML DBMS. PASSING BY REF T.hierarchy AS "t")

1-4244-0803-2/07/$20.00 ©C2007 IEEE 1439

Note that XMLExists is an SQL/X boolean function that eval- 3.2 Expressing Semantic Queries
uates an XPath expression on an XML value. If XPath returns
a nonempty sequence of nodes, then XMLExists is true, oth- In order for the transitive relationships from the ontology
erwise, it is false. that is stored in the transitiveReln table to be useful, we

need to be able to combine the semantic information with exist-

3 Our Framework ing relational data to answer semantic queries. There are several
ways to express queries so that they exploit the semantic infor-
mation in the transitive relationships and we outline them in this

3.1 Storing Semantic Information section.

There are two obvious methods for storing ontology in 3.2.1 Using SQL/XML
DBMS. One method models ontologies as a collection of
triples (predicate, subject, object), and store these triples in a Leveraging on the native XML support, we ean write
RDBMS table. This approach is adopted by most ontology sys- SQL/XML queries that directly access the transitive relation-
tems today [11, 2]. Alternatively, since ontologies are usually ships and the relational data. As an example, consider the lo-
encoded in XML (eg. OWL format), we can store the ontology catedIn relationship of Figure 1(b). Assume we have stored the
file as XML in an XML-enabled DBMS. relationship in table tranSitiveRein following our discus-

These two methods represent two extremes, and neither of sion in Section 3.1.
the ae efetiv i Now, we can use the following SQL/XML query to findthem are effective in managing ontology data. If we use an

wie tha orgnt frmteUiedSae.U)wines that on mlate from the United States (US)RDBMS to manage all the triples, inferencing can only be ac-
complished by using recursive SQL queries or by precomput- Example 2 (Using SQL/XML directly) Find all wines that
ing the inferred triples. Take the geographical region hierarchy originate from the US.
for example. Simple inquiries such as whether EdnaValley is SELECT W.Id
located inside US can only be expressed by recursive queries. FROM wine AS W, transitiveReln AS T
Recursive queries are hard to express and costly to process. Pre- WHERE XMLExists('$t//US//*
materialization of all inferred relationships also has problems. [fn: string (node-name (.))$r]'
For the geographical hierarchy, it means we must store all pairs PASSING BY REF T.hierarchy AS "t",
of locations as long as one is inside the other. This is often im- W. origin AS "r")
practical for large ontologies and makes updates to the ontology AND T. id=2 AND T .name='locatedIn';
extremely inefficient. The second method of storing the ontol-
ogy file as XML naively has the disadvantage that it is quite In the query, we use XMLExists to specify the location
difficult to write inferencing queries on the XML file. constraint in the ontology hierarchy that the query must sat-

The intuition behind our approach is to combine the isfy. The query directly accesses the XML column in the
strengths of XML database and RDBMS in handling different transitiveReln table, andthe usermustuse XPath expres-
types of data. For instance, the subsumption relationship can sion in the query.
be easily modeled by a tree structure (e.g., the "locatedln" hi- We study the pros and cons of expressing semantic queries
erarchy in Figure 1(b)). It is well known that ancestor/decedent in the form of Example 2. An ontology consists of a large va-
queries can be supported by tree labeling techniques in a very riety of relationships. However, a majority of semantic queries
efficient way, which means we can avoid recursive queries or are only concerned about a certain subsumption relationship,
materialization if such relationships are stored in tree structures. that is, whether two terms are related in the ontology hierarchy
On the other hand, ontology triples that normally do not partic- by relationships such as locatedIn or l s a. For instance,
ipate in recursive inferencing can be handled by RDBMS very the above query is concerned about whether a region is a subre-
well, so we can use RDBMS for such data. gion of another region. Since this is the most frequent type of

Our solution is to store ontology data in a hybrid relational- queries, we find that requiring users to write queries in the form
XML DBMS so that we can support ontology-based semantic of Example 2 has at least two disadvantages:
queries efficiently.

For the transitive relationships addressed in this paper, we 1. Queries are unnecessarily complicated even for simple
extract those relationships from ontology files and store them in tasks such as the one in Example 2. Users are forced to use
the table: XPath expressions inside SQL/XML even if their only pur-

transitiveRein (id INTEGER, name VARCHAR (27), pose is about reachability between two nodes in an XML
hierarchy XML) document.

Non-transitive relationships will be addressed in the full pa- 2. Operators such as XMLExists are more on the procedu-
per. ral side. The lack of declarativeness will limit the room of

1-4244-0803-2/07/$20.00 ©C2007 IEEE 1440

rule rewriting and optimization. This will eventually ef- view can also be created that associates the transitive relation-
fect the performance. We address the importance of rule ship with the relational data.
rewriting and the opportunity of optimization in more de- Example 4 (Using views) To find wines that originated from
tail in our full paper. US, wefirst create a view to contain the transitive closure of the

origin,
3.2.2 Using the ONTOLOGY Operator CREATE VIEW OriginView(Id, OriginLocatedIn) AS

To overcome the above mentioned deficiency, we introduce a SELECT W.Id, T.term
single ontology operator, ONTOLOGY, in the form of a table FROM Wine AS W,
function. The operator provides not only syntactic sugar which TABLE (ONTOLOGY (2, 'locatedIn'
aims at shielding users from the complexity in handling XML W.Origin, true)) AS T
directly, but also gives the optimizer more room to rewrite it into and issue the following SQL query on the view:
more appropriate SQL/XML query forms. The table function

SELECT V.Idtakes three parameters: FROM OriginView AS V

ONTOLOGY(OID INT, R CHAR(20), T CHAR(20)), WHERE V.OriginLocatedIn = 'US'

where 0 ID is the ontology ID, R is a relationship name, and T The advantages of using a view is that because the association is
is a term. Conceptually, it returns a table that contains all terms longer term and not per query, more optimization opportunities
X in the ontology identified by 0ID and R such that the rela- are available.
tionship R (T, X) holds. For each term it returns, it also gives
the distance between X and T in the corresponding ontology hi- 3.3 Re-writing Semantic Queries
erarchy (i.e., the corresponding XML document) 1.

However, it does not necessarily mean that an invocation of Section 3.2 has already described the SQL/XML
the ONTOLOGY table function will materialize the table as the XMLExists function and showed how it can be used as
one shown above. Instead, the rule rewriting and the optimiza- one implementation of the ONTOLOGY table function. In
tion mechanism will decide how to map the query in the most addition to the XMLExists function, we describe another
efficient way into XPath expressions that access the ontology. SQL/XML function, XMLTable, that can be used to imple-
We address this issue in more detail in our full paper. ment the ONTOLOGY table function as well. The XMLTable

Now, with the ONTOLOGY table function, we can express the function creates a virtual relational table using information
query in Example 2 in a more succinct and declarative manner. from XML data specified using XPath.

We illustrate using an examples how queries written using
Example 3 (Using the ONTOLOGY operator) Find all wines the ONTOLOGY table function can be re-written in SQL/XML
that originate from US. using the XMLExi st s and XMLTab1e functions. Without
SELECT W.id knowledge of the implementation of these SQL/XML functions
FROM wine AS W, in the query execution engine, it is not possible to decide which

TABLE (ONTOLOGY (2,'locatedIn','US')) AS re-writing will be more efficient; however, we will discuss op-
T timization issues in our full paper.

WHERE T.term =W.origin;
Example 5 (Query Rewrite) Consider our earlier example to

The table function ONTOLOGY can also take an optional find all wines that originate from US:
parameter, reverse. When reverse is True, the invocation SELECT W.id
ONTOLOGY (OID, R, T, True) will return all terms X FROM wine AS W,
such that the relationship R (X, T) holds. For instance, TABLE (ONTOLOGY (2,'locatedIn', 'US'))
callingONTOLOGY(2, subClassOf, 'EdnaValley', WHERE T.term W.origin;
True) will return Cali fornia and US as matching terms.

WHERE T.term = W.origin;

This allows us to traverse the subClassOf hierarchy in the There are at least two ways to express this query in the
reverse direction when inferencing. SQLIXML language. The query can be expressed using the

XMLExi s t boolean operator:
3.2.3 Using views SELECT W.id

FROM wine AS W, transitiveReln AS T
If the association between a transitive relationship and the rela- WHERE XMLExists('$t//US
tional data is more long term (beyond a single ad-hoc query), a //* [fn: string (node-name (.))=$r]'

PASSING BY REF T.hierarchy
lTh distance column is an optional column that may be used for query AS "t", W. origin AS "r")

result ranking in some applications. The distance values can be computed by AND T. id=2 AND T. name=' locatedIn';
annotating each XML node by its level in the pre-processing step.

1-4244-0803-2/07/$20.00 ©C2007 IEEE 1441

Conceptually, this rewritten query iterates through each row of However, due to the "mismatch" between the relational
the wine table and checks if the origin field is a descendant schema and the graphical model of ontology data, this
of US in the locatedIn XML tree of the transitiveReln relational-model based approach is still quite limited in its
ontology table. Alternatively, the query can also be re-written query processing efficiency. For example, inference is the most
using the XMLTabl e table function: expensive operation on ontology data when supporting seman-
SELECT W.id tic matching queries. All the previous approaches (including
FROM wine AS W, transitiveReln AS T, the approach in [2]) need to pre-compute and materialize all (or

XMLTable('$t//US//*' a big part of) the inference results (i.e., transitive closures) to
PASSING T.hierarchy AS "t" achieve reasonable performance at query execution time. This
COLUMNS "ename" VARCHAR (80) pre-processing not only incurs serious time and storage over-
PATH 'fn:string(node-name(.))' AS X head, but also makes the update of the pre-computed data in-

WHERE T.id=2 AND T.name='locatedIn'
AND X."ename" = W.origin; feasible when the underlying ontology data changes.

Conceptually, this query creates a virtual table X with a sin-
gle column ename that contains all the subregions of US and 5 Conclusion
performs a join on the origin column of the wine table and the
virtual table. In this paper we have described methods to store, manage

ontology data using a hybrid relational-XML DBMS without
For the case of views, the queries can be re-written in a sim- the need to materialize transitive closure for inferencing. We

ilar way. have showed how ontology data can be queried together with
relational data using the SQL/XML query language in con-
junction with the XPath specification. Our work showed that

4 Related Work DBMSs with native XML support is a good candidate to sup-
port ontology-based queries.

Several systems have been developed for building and ma-
nipulating ontologies. For example, Protege is an ontology ed- References
itor and a knowledge-base editor that allows the user to con-
struct a domain ontology, customize data entry forms, and enter [1] A. Das, W. Wu, and D. L. McGuinness. Industrial strength on-
data [12]. RStar is an RDF storage and query system for enter- tology management. In The Emerging Semantic Web, 2001.
prise resource management [5]. Other ontology building sys- [2] S. Das, E. I. Chong, G. Eadon, and J. Srinivasan. Supporting

ontology-based semantic matching in RDBMS. In VLDB, pages
tems include OntoEdit [7], OntoBroker [6], OntologyBuilder 1054-1065,2004.
and OntologyServer [1], and KAON [11]. Most systems use a [3] A. Eisenberg and J. Melton. SQL/XML is making good progress.
file system to store ontology data (e.g., OntoEdit). Others (e.g., SIGMOD Record, 31(2):101-108, 2002.
RStar and KAON) allow the ontology data to be stored in a rela- [4] A. Eisenberg and J. Melton. Advancements in SQL/XML. SIG-
tional DBMS. However, processing of ontology-related queries MOD Record, 33(3):79-86, 2004.
in these systems is typically done by an external middle-ware [5] L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu. RStar: An RDF
(wrapper) layer built on top of a DBMS engine. Two key lim- storage and query system for enterprise resource management.

In CIKM, 2004.
itations of this loosely-coupled approach are: (1) DBMS users [6] OntoBroker. http: //ontobroker aifb.
cannot reference ontology data directly, and (2) query process- uni-karlsruhe. de/index_ob. html.
ing of ontology-related queries cannot leverage the the query [7] OTK tool repository: Ontoedit. http://www.
processing and optimization power of a DBMS. ontoknowledge.org/tools/ontoedit. shtml.

The most recent advance in ontology management in the [8] OWL web ontology language guide, February 2004. http://
database community is a novel approach by Oracle [2]. In [2], www .w3.org/TR/owl-guide/.
Das et al. propose a method to support ontology-based seman- [9] OWL web ontology language overview, February 2004. http:
tic matching in RDBMS using SQL directly. Ontology data are //www.w3.org/TR/ow1 features/.
pre-processed and stored in a set of system-defined tables. A [10] OWL web ontology language reference, February 2004. http:

//www.w3.org/TR/owl-ref/.
set of special operators and a new indexing scheme are intro- [11] The KArlsruhe ONtology and semantic web tool suite. http:
duced. A database user can thus reference the ontology data //kaon.semanticweb.org/.
directly using the new operators. Compared to the loosely- [12] The protg ontology editor and knowledge acquisition system.
coupled approach, this method opens up the possibility of com- http://protege.stanford.edu/.
bining ontology query operators with existing SQL operators [13] Wine ontology. http: //www.w3 .org/TR/2004 /
such as joins. The ability to manipulate ontology data and regu- REC-owi-guide-20040210/wine .rdf.
lar relational data directly in the RDBMS greatly simplifies and
facilitates the development of ontology-driven applications.

1-4244-0803-2/07/$20.00 ©2007 IEEE 1442

